HINT3
FOR

HEW LIS DRIVE
OUWNERS

FRON]
HE COLONUTS

TANMNDY TRS 8¢ COLOUR COMPUTER
HINTS FOR RMEW DISK DRIVE OWNERS
Compiled by Bob Devries and Graham Butcher.

Your new disk drive will be one of your greatest assets
after the COCO. The new slimline and other models are far superior to
the Tandy drive and controller. As they are not Tandy, a few things
should be pointed out.

The controllers and drives have been set up to be totally
compatible with disks written on Tandy drives set to 35 tracks. All
comments for the Tandy drives are the same on your drive.

You have probably spent some time deciding on your purchase,
time waiting for it to be set up, and now want to start using it.

SETTING UF

Firstly make sure that all power is turned off. Insert the
controller into the ROM port and connect the cable. Power up all
accessories before the COCO. Never remove the controller from the
computer with the power on, as serious damage could be caused.

When you power up the COCO you should be greeted with the
name and version of the rom installed in your controller eg. DISK
EXTEMDED COLOR BASIC etc. This tells you that the disk basic contained
in the controller 1is being used. This message will always appear on

the screen on pover up with the controller plugged in even with no
power to the drive.

THE DISKETTES

The floppy disk or diskette comes in several types. Only
soft sectored, double density disks may be used on the COCO so be
careful when buying vyours. The disks need to be initialised or
prepared to be used to store programs or data. Your first command to
your new drive will be one to initialise a disk.

Make sure the disk is in the drive the right way. Hold the
disk by the top and take it from its protective envelope. Most
diskettes have a label on them and all have a small section about Smm
square cut from them. On the new slimline drives which rest
horizontally, the cut notch is on the left of the drive door keeping
the label up. On the Tandy drives which rest vertically , the notch is
to the top and the label on the right hand side. Never touch any part
of the disk which can be seen through the slot as this will damage the
diskette. Treat the diskettes with care. They are reasonably priced
these days but the files they contain may represent many long hours of
your work and therefore could be difficult to replace.

Insert the disk into the drive and close the door. Different
brands of drives have different types of door closings. Check to make
sure you know how your drive door closes. You will always get an 1/0
if the door is open and you try to access your disk.

FREFARING THE DISKETTE

Mow with the disk inserted type DSKINI®@ and press <(ENTER>.
The drive will begin working to initialise the diskette in drive @ and
take about 3¢ seconds before you get an OK prompt. Now type DIR and
press <ENTER>. You will get another OK prompt. Your command DIR asked
the computer to look at track 17 and print on the screen the names of
all programs contained on the disk. As you have just initialised the
disk there are no programs on it hence the directory is empty.

I¥f you have a double sided drive, you may store programs on
the other side of the disk without removing it from the drive. Your
drives are set up as drive @ and drive 2. When you typed in DIR it was
the same as typing in DIR@G. Try typing in DIRZ. The drive will work
for a while and come back with an I/0 error. This is because the disk
has not been initialised and cannot be read. Now you can initialise
this second side with the command DSKIMIZ2 and press <ENTER>. At the OK
prompt type DIR2Z and you will see the OK prompt as you saw at DIR
(DIRQ) .

STORINMNG FILES oM THE DISKETTE

Saving programs to disk is the same as saving to tape except
the C in CSAVE is removed to leave a command SAVE"PROGRAM"for a basic
program and by SAVEM"PROGRAM",start address,end address, exec address
for a ML program. Load programs from disk with the command
LOAD"PROGRAM" for basic and LOADM"PROGRAM" for ML programs.

There are several programs available that will transfer
programs from tape to disk but try it this way for a while. It will
help you to understand your system better. Save some programs onto
your initialised disk and we will look at the directory.

DISK FREE SFPACE

Finished? You may have got carried away and got a DF error.
This means that the disk is full. You may check to see if there is any
free space on a disk with the command ?FREE(@). The disk will whirl
for a while and a number between @ and 68 will be printed on the
screen. This tells you how many free "GRANULES" there are on that side
of the disk for you to store programs. 68 means that the disk is empty
and @ means that the disk is full. There may be a few granules free on
a disk and yet when you try to save a program onto it you get a DF
error. This means that the program you are trying to save needs more
space than is left. If you have a double sided drive, check the +#ree
granules on drive 2 with the command ?FREE(2).

THE DIRECTOAORY

Let’s look at the directory. Type DIR and press <(ENTER>. You
will see letters and numbers set out in five columns. The first column
gives the names of the programs while the second column indicates the
type of extension the program has. If you saved a basic program with
SAVE"PROGRAM" the computer will assign the extension BAS. I+ you saved
a ML program with SAVEM"PROGRAM",start address,end address,exec
address then the computer will assign the extension BIN. It is
possible to assign your own extension eg SAVEM"PROGRAM/XXX",start,end,
exec. Files from Database programs will have the extension DAT.

The next three columns store technical information which are
not required for normal use but will be briefly explained.

The third column will have a number between @ and 3.

%] Basic program

1 Data created by a basic program

2 Data created by a ML program

3 A source program created by an editor/assembler

The fourth column lists the format the file is stored in.

A Ascii
B Binary

The fifth column shows how many granules the file uses.

I+ you have stored a large number of files on a disk they
will flash by, leaving you with only the last 14 shown on the screen.
You may stop this, but it depends on the type of disk rom installed in
your controller. The Tandy version will stop scrolling if you press
the <SHIFT> and <@> at the same time but you need to be quick. Other
versions will stop at the time when the screen is +full. Continue
scrolling by pressing any key.

BEACKUPR

Some disks may contain programs you feel warrant a second or
backup copy. You use the BACKUP command to do this.

I¥f you have only one drive, initialise your backup disk and
then insert your program disk (source diskette). Type BACKUPZ and
press <ENTER>. The drive will work for a few seconds and then prompt
you to "INSERT DESTIMNATION DISKETTE AND PRESS ENTER". The drive will
virite to the new disk and then prompt you to "INSERT SOURCE DISK AND
PRESS ENTER". Continue until the OK prompt tells you that the BACKUP
is finished. You will notice that it takes 1longer to write the
destination disk than it takes to read the source disk. This is
because while the drive is writing to the destination disk it is also
verifying that the data vas written correctly.

COPYINMNG A FILE

Programs may be transferred from disk to disk by using the
command COPY. This command takes the whole file and rewrites it to
another disk or another side of the same disk without you having to
worry about addresses in ML programs.

Copying from one side of a disk to the other side o0f the
same disk is done using the command line as set out here.

COPY"PROGRAM/EXT:9" TO "PROGRAM/EXT:2" and press <ENTER>»

Substitute the name and extension of your program into the
command line above.

COPY"LOGO/BIN:@" TO "LOGO/BIN:2" OR
COPY"MATHTEST/BAS:@" TO "MATHTEST/BAS:2"

You can also use the COPY command to transfer the program
from one disk to the another. Place the SOURCE disk in your drive and
type:

COPY*PROGRAM/EXT:@" and press (ENTER>»

Then follow the screen instructions until the file has been
transferred.

KILLING A FILE

You may decide to remove a file from your disk permanently.
This is done using the KILL command. Place your disk in the drive and
type in DIR. Check the correct spelling and extension of the file and
then type in:

KILL"PROGRAM/EXT:DRIVE NUMBER"

To completely remove all files from a disk, wuse the
initialising command DSKINI.

This first part of the booklet is just to get you started
using your new drive system. You are now ready to start PART II.

st !

Disk Extended Basic Instruction Set.
An in-depth view.

In this section the DISK EXTEMDED COLOR BASIC instruction. set

will be explained in some detail. For guick reference please turn to
the last section of these notes.

The format used in these explanations will be as follows:-
INSTRUCTION NAME

This is the name that the command is known by, e.g. DIR

SYNTAX

The syntax section shows the correct format for the instruction
as well as all parameters, whether required or optional.

PURPOSE

This section explains what the instruction is used for, and

provides some background to help you understand how and when to use
it.

EXAMPLE

This section provides one or more examples which illustrate
typical applications of the instruction.

A number of key words, abbreviations, and symbols are used
throughout this manual to indicate parameters. They are :-

SYMBOL MEANING EXAMPLES
filename Name of program "MYPROG"

/ext filename extension /BAS, /DAT, /BIN
:d drive number g, 12

Hbuffer buffer number #1, #S

data constant or variable A, 1, "STRING"

Most of the instructions in DISK BASIC include parameters which
modify the operation of the instruction in some way. The following
notation conventions are used to describe these parameters :

{parameter>

Parameters which MUST be included with an instruction are shown
in angle brackets "<{(>". The angle brackets are not included in the
instruction, but everything inside them is.

[parameter]

Parameters which MAY be included with an instruction are shown in
square brackets "[1". The square brackets are not included in the
instruction, but everything inside them is.

gerea

A comma followed by three periods is used to indicate the
optional continuation of a list. This indicates that the immediately
preceding parameter may be continued to a maximum of 249 characters.

S

T3} M ™M T3 T3

2 O 3

-2 3 3 3 O3 33 I3 IO 3 M T

BACKUP COMMAND

R N SN L BN SR R e e A e A Sy S 4 e P N M M R M R A AR A e - A et v e e M r Em M Em Em Em Em Em RN M W e e

SYNTAX @

BACKUP <{source drive> TO {destinaticn drive?
or

BACKUP <drive’
PURPOSE :

The BACKUP command is used to make a copy of a disk. The disk to
be copied is referred to as the "source disk", since it is the source
of the data to be copied. The disk which is to be the copy is referred
to as the “"destination disk", since it is the destination of the data
to be copied. The BACKUP command will copy the entire contents of the
source disk to the destination disk.

The BACKUP command will copy the entire contents of the source
disk, sector-by-sector, to the destination disk. I there is any data
oh the destination disk, 1t will be written over. The destination disk
must be formatted (see DISKINI). :

The action taken by the BACKUP command will be different for
single drive BACKUPs than for multiple drive BACKUPSs.

USING THE BACKUP COMMAND OM MULTIPLE~DRIVE SYSTEMS
EXAMPLE :
BACKUP & TO |

The computer will read data from the disk in drive @ and write it
to the disk in drive 1, This procedure will continue until the
computer has read all of the sectors of the disk in drive &, and
written all of the data to the disk in drive 1.

WARNING ! The BACKUP command will destroy data or programs in
memory! DO NOT use this command if you have a program in memory that
you want to keep! Use the SAVE command to save the program prior to
using the BACKUP command.

- 3 3O 232 T@Od 33 OO OO 13"/ 3O 3O333

'
PR Y

USING THE BACKUF COMMAND OM SIMNGLE-DRIVE SYSTEMS
EXAMPLE :

BACKUF @

This is the only valid syntax for the BACKUP command on systems
with only one drive. Place the source disk in the disk drive, and
enter the command "BACKUP @". Since the disk tontains more data than
your computer can hold in it's memory, you will have to help! First,
the computer will read some data +rom the source disk into it's
memory. Then, the computer will instruct you to insert the destination
disk in the disk drive:

INSERT DESTINATION DISKETTE AMD PRESS EMTER

Remove the source disk and insert the destination disk in the
drive, clase the door, and press the "ENTER" key. the computer will
then write the data to the destination disk. Then the computer will
instruct you to place the source disk back in the disk drive:

INSERT SOURCE DISKETTE AND PRESS ENTER

Remove the destination disk +from the disk drive, insert the
source disk, close the drive door, and press the "ENTER" key. The
computer will then read some more data from the source disk.

This procedure will continue until all of the sectors of the
source disk have been read into memory and written toc the destination

disk. Be careful not to get the two disks mixed wup during this
procedure!

]

e [— R — R — E—— —- o — E——- E———- R _E—- R E— R - B Iwe. [I

o,

CLOSE STATEMENT

SYNTAX
CLOSE [[#] bufferli,[H]) bufferd,...
PURPOSE

The CLOSE statement is used to terminate disk 1/Q0 operations. All
disk I/0 is handled through buffers (reserved areas of memory)
assigned as needed with the OPEN command,

When a disk read statement (INPUT or GET) is executed, the
required disk sector is read into the associated memory buffer.
Subsequent INPUT statements will access data in the buffer until the
requested data lies in another sector. Then a new sector may be read
into the buffer. This technique Iincreases the throughput of disk
operations by minimizing disk accesses.

Disk write commands are handled in much the same way. Data to be
written to the disk are butfered in memory until the buffer is full,
or until! another is requested. At this point, the entire buffer will
be written to the appropriate sector on the disk, thus minimizing disk
I1/0 pperations.

When an input file buffer is closed, the only action taken by the
computer is to free the affected buffer space for subsequent use with
another +file. When an output file buffer is closed, .the computer will
write the buffer contents (if any) to the disk file, and update the
directory entry to reflect the new file size. The output butfer spate
is then available for use with another file,

I+ 8 buffer number is specified with the CLOSE command, only that
buffer will be closed. If no buffer is specified, all currently open
buffers will be closed.

EXAMPLE :
CLDSE i, 8
CLOSE #1, #2
CLOSE
In the #irst example, only buffers { and 3 will be closed. In the

second example, anly buffers 1 and 2 will be clased. In the +inal
example, all currently open butfers mill be closed,

2 333 4T3 1333 030033 O3OOO43 Dm 4a A

—3 33

-

COPY COMMAND

e e e Em RN R N R M N EE MR MR ER N PR LR SN AR SR M EE A RS EE N SR My My M Ah S R e e ek e W wh e mr e am e w Sk ek e ey Em W E W

SYNTAX

CORPY <("filenamel/extl:d1" TG <("filenameZ/extl:d]">

or
COPY <{"filename/exti:di">

PURPOSE :

The copy command is used to make a duplicate copy of a file. The
contents of the source file "filenamel"” are copied to the destination
file *"filename2”. I+ the drive parawmeter [:d) is not specified, the
current default drive will be used.

After the computer has completed execution of the COPY command,
the contents of the destination file will be identical to the contents
of the source file, although the file names may be different.

EXAMPLE 3
COPY "MYPROG/BAS" TO "YOURPROG/BAS®"
COPY "MYPROG/BAS:9" TO "MYPROG/BAS:i"

In the +irst example, the contents of the file "MYPROGB/BAS® are
ctopied to the file "YOURPROG/BAS". The source +ile must be on the
default drive, and the destination file will be written on the default
drive. In the second example, the file "MYPROG/BAS" on drive @ will be
copied to the file "MYPROG/BAS" on drive 1§,

WARNING: In some cases, the COPY command may destroy a program in

memory. It is good practice to not use the COPY command when there is
a program in memory.

CAUTION: Be careful not to copy a file to a destination with the same
name on the same disk. This will potentially result in the file being
deleted!

'
)

USING THE COPY COMMAMD OM SINGLE-DRIVE SYSTEMS
EXAMPLE
COPY "MYPROG/BAS"

This is the correct syntax for copying files from one disk to
another on single-drive systems. When the command is entered, the
computer first reads a number of sectors from the scurce disk and then
prompts with 3

INSERT DESTIMNATIOM DISK AND PRESS ENTER

Remove the source disk,; insert the disk on which vyou want the
topy written, close the drive door, and press the *"ENTER" key. The
computer will write the file portion in memory to the destination
disk. Depending on the length of the file, the computer may prompt you
Wwith:

INSERT SOURCE DISK AND PRESS ENTER
If this occurs, remove the destination disk and replace the

source disk in the drive. The computer will repeat this procedure
until all of the +file has been copied to the destination disk.

1¢

CVN FUNCTIGN

L MR Y m wh TR M mm R R ST W WE EE MR M EE R AL MR e e e e e v TE v R WY MNP RR M MR M MR AR i W A e e E e R R A L e e e R

SYNTAX :
CVN <{data)>
PURPOSE :

The CVN function will decode & number which has been encoded into
a string with the MKM® function (refer to the description of the MKNs
function). The CVN function will decode a S-byte string code created
by the MKN% function back into a number.

The CUYN function is normally used in conjunction with direct
access file input since all numeric data stored in a2 direct access
$ile must be converted to string data using the MKN$ function. All
numeric data read from a direct access file must be converted to
numeric torm using the CUN function before it can be operated on as
numeric data.

EXAMPLE :
A= CVN (A%)
In this example, the variable "A* g assigned the numeric

equivalent of the S-byte encoded string A%. The enccoded data in A% was
created by the MKN& function, or read from a direct access +file.

11

DIR COMMAND

W W OB R W M S U MR MM S Sy M Sy eh ey iy S ke frm ke e R T Tm M e iy ey e M dem e i e T W YT P AT R T M N W Em Em Er Em Em Em am Em A A A SRR Sk AN e me me e

SYNTAX @

DIR [drivel
PURPOSE :

The DIR command is used to display the directory of¥ a disk. The
directory of the disk in tdrivel will be displaved. If the [drivel
parameter is omitted, the directory ot the disk in the current default
drive will be displayed.

EXAMPLE :
DIR®
MYPROG BAS g B 3
FILE DAT 1 A4
TEST BIN ZB1

The directory 1listing consists of a 5 column display. The
information presented in each column is explained below:

Column Meaning

1 Filename

2 File Extension

3 File Type : @ =) BASIC program file
1 => BASIC data file
2 = MACHINE iL.ANBUAGE +file
3 => EDITOR source file

4 Storage Format A => ASCII
B = Binary

] File Length (in granules)
12

=3 3 3 ™2 3 300 3 I EZ:I /3 D™ 1 4,

-3 O T 33 13O 3

DRIVE COMMAND

e R R R R R R kel e L e e e el e e o O e —

SYNTAX @
DRIVE {drive>

PURPOSE :

/

The DRIVE command is used to change the default drive. When the
computer s RESET, the default drive will be @. Drive @ will remain
the default drive until, and unless, you change the default drive with
the DRIVE command. The drive number can only be changed to @, 1, 2, or
3.

The default drive will be used for all commands where a drive
number is reguired; except where a drive number is specified on the
command line. Thus, the DRIVE command is a convenience feature., If you
are doing a 1ot of work on drive 1, for example, you may use the
tommand "DRIVE 1* to change the default drive to drive 1. Then, vyou
need not use the ":1" parameter on each command line.

The default drive will remain in effect until ypu change it, or
until the computer is RESET.

EXAMPLE :
DRIVE 1
In this example, the default drive is changed to drive 1. Drive 1

will remain the default drive until the DRIVE command is used to
change it, or until the computer is RESET.

13

/O ™M T 103 ™M O33N ™M MR, O ™M T 4, O3 4o

U

D8KINI COMMAND

v A v e e A e g R AN MR EE A R MR EE BN MR EE T N M W E Fe e TE W e e e M by A A A M A W S e AR B A B M EE S M MR MR EA AR ME M A e e ke e e wm mm mh mm Em Em =

SYNTAX :
DSKINI <driveXl,nl
PURPOSE

The DSKINI command {s used to format a disk. A new disk must be
formatted before 1t can be used by the computer. A used disk can be
formatted to erase all of the data on the disk,

The DSKINI command will format the disk intc 35 tracks each with
18 granules.

The optional part of the command is the skip-factor which is
normally left out (4 is used in this case). The skip-factor i8 set wup
to allow the computer time to process the data between reading
sectors. The skip-factor can be changed for certain special purposes.

EXAMPLE

DSKIMI &

14

O 3O 43 443 3o 43

DSKI% STATEMENT

—— ke e e T e R T N R M M M M M N N M R N M M M M M M N AN R M M R M A M RE R R M mm R Em A MR A e A i b wh Em Em mm Em =

SYNTAX
D8KI% <drivel),<{track),{sector>,{varlis),{var2s’
PURPOSE :

The DSKI$ statement is a special disk I/70 statement which allowns
data to be input directly from the disk, The DSKI® statement will
input one sector (256 bytes) directly from the specified disk. The
data will be input intop two string variables, {vari%’> and <{var2%>. The
string variable {vari%> will contain the +first 128 bvytes o©of the
sector, while the string variable <(var2%> will gcontain the second 128
bytes of the sector.

The <{drive?>, <{track>, and {sector?> parameters are required by the
DSKI% statement. The {drive’ parameter specifies the drive to be read
{g-3). The <(track)> parameter sperifies the track to be read (9-34).
The {sector> parameter speciflies the sector to be read (1-18).

EXAMPLE :

DSKI% €,17,3,A1$,A2%

In this example, the data from track 17, sector 3, of the disk in
drive @ will be read into variables Al% and A2%. The first 128 bytes

of the sector will be read into Al%, and the remaining 128 bytes will
be read into AZ&.

iS5

=3 0 T3 3 4O M I3"7X D70 ™mM I 0™ T3 71N ™ fM T T ./

DSKOs STATEMENT

SYNTAX
DSKO$ {driver>,{track?,{sector’,{"datal”>,{"dataz">
PURPOSE

The DSKN% statement is a special disk I/0 statement which allows
data to be written directly to the disk. The DSKO% statement will put
up to 256 bytes directly to a specified sector. The +irst string
{"datal®> will be written in the first half of the sector (bytes
#-127}, while the second string <("data2"> will be written o©on the
second half of the sector (bytes 128-255). The data represented by
(*datai®> and <(*dataZ?*> may be either string data or variables.

The DSKU% statement requires the parameters <drive), <(track>, and
¢sector>. The <(drive> parameter specifies on which drive (@-3) the
data is to be written. The <track)> parameter specifies the track
(#-34) on which the data is to be written. The <sectur) parameter
specifies the sector (1-18) on which the data will be written.

CAUTION: This statement writes data directly to the disk,
bypassing the file control system. Be careful not to destroy data on

the disk!
EXAMPLE 1:
DSKO® &,15,10,"string data i","string data 2"
EXAMPLE Z:
Al = *"string data 1"
B = "string data 2*
DSKO+% &,15,10, A%, Bs
Ih both examples, the string "string data 1" will be written on

the firast half of sector 1€ on track 15 of the disk in drive . The

string "string data 2" will be written on the second half of the
sector.

ié6

EQF FUNCTION

S ————— R P PR g A etk R R

SYNTAX @

EOF <({(buffer)>
PURPOSE :

The EOF function returns the value -1 {f there is no more data to
be read Ffrom a file buffer. If there is more data, the value 8 is
returned. 5o, the value returned by the EOF function can be tested to
determine i+ all of a file has been read.

EXAMPLE !

14 OPEM "1", #1, "TEST/DAT"

20 I = 1 + 1

3¢ IF EOF(1) = -1 THEN &4d

4@ GET #i, I

5@ INPUT #1, A%

&9 PRINT A%

79 GOTO 268

8g CLOSE #1

This program segment will read all of the data +from the file

"TEST/DAT". Each record read is printed until the end-of-file tag is
encountered. At that point, the file will be closed.

1z

T3 3 9 TJa 3 3 TJa /T,

3 3 T3 3 3 3 ™ T[Mm M M &4 T

comb

FIELD : STATEMENT

e mir mm S e b e R e m e R AR M M AN A M A R A M A A W M M M M R M A Em M AR M EE M Em M M M M EE EA M M M AR M A A AA M WS A% m el v e mm mm wm mm

SYNTAX :
FIELD <{#Hbuffer>,<field size> AS <field namel,...
PURFOSE :

The FIELD statement is wused in conjunction with direct-access
(sometimes called "random access") files. When the field statement is
used, it must be executed before the GET pr PUT statements {(see also
GET and PUT). The FIELD statement allocates space for variables in the
direct-atcess file buffer.

The <(#bufter? parameter specifies the buffer number to which the
field statement applies. This parameter is specified only once per
FIELD statement. The <+field size> parameter specities the number o+f
bytes to be reserved for the variable (field name?>. Buffer space will
be allocated in the order that the fields are identified in the FIELD
statement. '

EXAMPLE :
FIELD #1, 5 AS Als, 1¢ AS A2%, 7 AS B$

In this example, the first 3 bytes of disk 1/0 buffer #1 will be
reserved for variable "Ai%". The next 18 bytes will be reserved for
the wvarlable "A2%", and the next ? bytes will be reserved for the
variable "B%". Note that the FIELD statement does not place data in
the random file buffer (refer to the LSET, RSET, and PUT statements).

Any number of FIELD statements may be executed for a given file
in order to assign buffer space. That is, if there is more space to be
assigned than will +fit in one FIELD statement, you may use multiple
FIELD statements to assign all of the variables in a given file
buffer.

i8

9 O 333737713 13304 O3 O 33OO093D79 M 4mMa/ T3 DO O3 T3 T3 T

P

FILES STATEMENT

e e A e A AR M M MR M R T W e ity e M WA S M P W e T Ak Ak M N S M M R W R S W W ey e e e S AR A S MR WA ER R Em Em A A e e e

SYNTAX !
FILES <number>l,sizel
PURPOSE :

When the computer is turned on or RESET, memory space is
automatically reserved +for two file buffers (#! and #2, 256 bytes
each), and 254 bytes are reserved for the direct~access record butfer,
The file buffers are used for all types of file access (sequential or
direct-access, input or output). The direct-access record bufter is
used to hold direct-access records during file I/0.

In direct-access +ile 1I/0, data are read one sector at a time
into the associated file buffer. Then, each record is moved from the
file buffer into the direct-access record buffer.

The FILES statement may be used to specify the amount of memory
space to be reserved for Ffile I/0 buffers as well as for the
direct-access record buffer. The <{number?> parameter specifies the
numbers of buffers (1-15) to be reserved. A total of 2546 bytes will be
reserved for each file buffer. The [sizel] parameter is optional, and,
if included, specifies the amount of memory to be reserved for the-
direct-access record buffer. If the [sizel] parameter is not included,
the computer will reserve 256 bytes of memory for direct buffer space,
regardless of how many buffers there may be. _

I+ vyou plan to have more than 2 files open at one time, then you
must use the FILES statement to reserve the appropriate amount of
buffer spacte. Likewise, if you plan to use opne or more direct-access
files, and the combined record length is in excess of 234 bytes, you
must wuse the FILES statement tou allocate the approprlate amount of
buffer space.

EXAMPLE !

FILES 3
FILES 5, 1¢49d

In the first example, buffer space will be reserved for 3 files,
and 204 bytes will be reserved for the direct-access record buffer. In
the second example; buffer spatre will be reserved for 5 $iles, and
1909 bytes will be reserved Ffor the direct-access record buffer.

12

FREE FUNCTION

N S RN R MR M M RN RN M SN M M A My e e e e N N W W W M R R A R R e M A e b s o

SYNTAX :
FREE< {drive) >
PURPOSE :

The FREE function returns the amount of free (unused) disk space
remaining on the disk in the specified drive, The {(drive) parameter is
required, and specifies which drive the computer is to check (#8-3).

The FREE function will return an integer value representing the
number of unallocated granules on the disk (each granule containg 9
sectars of 256 bytes of datal. There are 48 granules available on an
unused disk., This is equal to 154672 bytes per disk.

EXAMPLE :
PRIMNT FREE (@)

In this example, the computer will print the number ot free
{funallocated) granules remaining on the digk in drive a.

28

—) 3 /M 333 33 O3

-

GET | STATEMENT

e ek A e e e e A B W MR v e b e N i M M N N W W e e e A el el e EN N EA e e e b d S AR A MM e W M A R W R W mm e ek b

SYNTAX @
GEY <{#buffer[,recordl
PURPDSE

The GET statement is used to read one record from a direct-access
(random access) disk file to the associated input buffer. MNote that
the OFPEN statement must first be executed to associate an input buffer
with a disk #ile.

The <Hbuffer> parameter is required, and specifies which buffer
{1-15) is to receive the data. The [record] parameter is optional,
and, if included, specifies which file record is to be read. I+ the
[record] parameter 18 not specified, the next sequential record will
be read. That is, the record number o+ the record currently in the
butfer will be incremented by one, and the record corresponding to the
new record number will be read into the buffer.

EXAMPLE !

GET #1, 2

GET #3, M

In the first example, the computer will read retord number 2 from
the previously OPEM'd file into buffer #1. In the second example,
record number "N* of the previously OPEMN'd file is read into buffer
#3. As shown in the second example, the record number may be specified

through an integer variable, In this way, the record number to be read
may be assigned under programn control.

21

23 4O 3 33 133

2 O

Y

INPUT STATEMENT

v e R ET NS T ET MR M M MmN N EA R RN ML ML ML RS ML EE M EA M ARk we ke e W WE EE R M M A A e A Am A B M e b wm WE TR R EE am Em R Em R AR e

SYNTAX
INPUT <{Hbutffer>,{vari>f,var2ll,vard3l,...
FURPOSE :

The INPUT statement is used to move data from a disk input buffer
to a program variable. Data items in the buffer are assigned to the
variable names in the order that they are encountered on the INRUT
statement line. Variable <varl’ will be assigned the first data item
in the buffer, variable [var2]) will be assighed the second item, and
&0 on.

The INPUT statement reguires a minimum of two parameters. The
{#buffer’> parameter specifies the buffer from which the data are to be
obtained (1-15). The buffer number must be previously referenced in an
OPEN statement. The variable parameters {({vari>, [var2l,...) specify
the variable names into which the buffer data are moved. At least one
variable name must be included on the IMPUT statement i(ine.

The INPUT statement requires a minimum of one variable name. As
many variable names as required may be named on the command line,
however the total line length may not exceed 255 characters. The data
from the buffer will be assigned to the variable names in the order
that they appear on the command line,

Note that in the case of direct-access file input operations,; the
GET statement must be executed prior to the INPUT statement.
Otherwise, there is no valid data in the direct-access record buffer,
and the results of the INPUT statement will be meaningless.

EXAMPLE

INPUT #1, A%, B%, C%

In this example, the data in buffer #i, which has been previously
OPEM'd, wiil be assigned to the variables A%, B$, and C%. The +first
data dtem in the buffer will be assigned to the variable "A$", the

second item will be assigned to the variable "B#%", and the third datum
Wwill be assigned to the variable "C%",

22

3

b

KILL COMMAND

e s e R e e e R L A e e e R W W W N W A RN A e e e e R R ML ek wm R T e e Ve e e

SYNTAX :
KILL <*filenamesextl:d1">
PURPQOSE :

The KILL command is used to delete a file from a disk. The file
name and extension must be specified., If the drive parameter [:d)] is
specified, the file named will be deleted $rom the disk in the
specified drive. If the drive specification is omitted, the file named
will be deleted from the disk in the default drive.

Note that the +filename, the extension, and the drive (if
specified) must all be enclosed in quote warks. UWhen the +ile is
deleted, the disk space allocated to the file will be returned to the
free-space pocl providing more usable disk space.

EXAMPLE
KILL "MYPROG/BAS"

KILL "MYPROG/BRAS: 1"

In the first example, the file named "MYPROG/BAS".will be deleted
from the disk in the current default drive. In the second example, the
tile named "MYPROG/BAS" will be deleted from the disk in drive 1,

23

3 7

LINE INPUT | STATEMENT

A AN W S M e MR R M M W M S TR N W TEN W WE TE W A W v T W s M N P TE W M wm M W Ew M v A mw mm E r E m m m E Em R

SYNTAX :
LINE IMPUT <{#buffer’>,<varis’
PURPOSE

The LINE INPUT statement is used to read a "line® of data from a
disk 1/0 buffer. The buffer must be assigned to a file by a previously
executed OPEM statement, and there must be data in the buffer. A
"line" of data is defined as a group of data terminated by a "ENTER"
character (2D hex, 12 decimal). All data up to, but not including, the
"ENTER" character will be transferred to the variable named on the
statement line.

Two parameters are reqguired in conjunction with the LINE INPUT
statement. The <(#buffer?> parameter spectfies the input buffer (1-13)
from which the data are to be taken. The (vari%) parameter specifies
the string variable name into which the data are to be transferred.

EXAMPLE :

LINE INPUT #1, B%

In this example, the data From input butfer #H1 will be
transferred to the string wvariable "B%", All data up to the first

"ENTER" character will be transferred from the buffer to the string
variable.

249

=2 3 O3 333 73 O3 3O303O373:32)2)73C1333CT1M OmOmOM O™@O33 M 4 &4

A R |

.CAD : COMMAND

e m Em Em m mm wm e ok ek WR W S vk M M AN L S R M A e M M A T A M M M N A N N N M M R M N W M M M M W Em s Em . mm mm Em m m Ey EW

SYMTAX &
LOAD <{"filenamels/ext1[:dl">[,R]
PURPOSE :

The LOAD command is used to transfer a BASIC program +ile from
disk to main memory. When a program ls lpaded into memory, the program
and data (if any) currently in main memory will be written over by the
new program, Be careful not to load a file over a program that you
want to keep!

The LOAD command requires only one parameter: the file name. The
file name extension is optional. If the file name extension is not
included, the extension "/BAS" will be used.

The drive parameter [:1d] is also optional. If included, the file
will be loaded Frowm the disk in the drive specified. Otherwise, the
current default drive will be used,

The "R" parameter is an optional parameter. I+ included, the "R*
parameter will instruct the computer to run the program immediately
after it is loaded. This eliminates the need to enter the *"RUN"
command after the file is loaded.

EXAMPLE :

LOAD “"HMYPROG®

LOAD “MYPROG/BAS:2",R

Iin the first example, the file named "MYPROGB/BAS" on the disk in
the current default drive wlll be loaded into memory. In the second

example, the +ile "MYPROG/BAS" on the disk in drive 2 will be loaded
into main memory and will run immediately after it is loaded.

25

-

LOADM COMMAND

—— e e e e v b e T E W e v e T b e e e W A R Sy e me e e e e e e e e M e e e W W

SYNTAX
LOADM <*filenamel/ext]{:dl">[,offset]
PURFOSE

The LOADM command is used to transfer a machine code program from
disk to main memory. When the LOADM command is used, the program
and/or data (if any} at the lovad address will be written over by the
new program. Be careful not to destroy any program or data that you
viish to keep!

The LOADM command requires only one parameter: the file name. The
file name extension 1is aptiocnal. If the file name extension is not
included, the computer will assume the extension of "/BIN".

The drive parameter [:d] is also optional. If included, the +ile
will be loaded from the disk in the drive specified. Otherwise, the
current default drive will be used.

The [offsetl]l parameter is an optional parameter. If included, the
offset specified will be added to the program locad address. The
program wWill then be loaded at the address determined by the sum of

the offset and the load address. bote that the offset parameter is-:

assumed to be in decimal unless preceded by the characters "&H" to
indicate that the number is hexadecimal.

EXAMPLE @
LOADM "MYPROG™
LOADM "MYPROG/BIN:1",&H180d

In the tirst example, the file named "MYPROG/BIN®" on the disk in
the current default drive will be lnaded inta memory. The program will
be loaded at the program’s normal lopad address (as specified in the
file). In the wsecond example, the program named "MYPRGG/BIN" will be
loaded from the disk in drive 1. The program will be loaded at the
address determined by the sum of the program’'s normal load address and
180¢ Hex. '

26

3 /T3 '3

S I R R R —— e S E——" E— E—.—- ——— E——" E——.- R S B B

3

Loc FUNCTION

S A R A N M U S O S e B R uie S A ST S S AR Sl min R N M A e M s e mm s e wm t Em E Em M e A W M WE AN S Ak

SYNTAX :
LOC < {(butfer)>
PURPOSE :

The LOC +function returns the record number of the file record

currently in the specified buffer. It is assumed that a buffer has

been previously opened (see OPEN statement), and that a record has
been placed in the buffer.

Only one parameter 1is reguired In conjunction with the LOC
function: the <(buffer> parameter. This parameter specifies the buffer
number (1-15) for which the record number is to be returned.

EXAMPLE :

PRINT LOC(1)

A = LGC(1)

In the +irst example, the record number of the file record
currently in buffer #1 will be printed. In the second example, the

record number of the +ile record currently in buffer #1 will he
assigned to the variable A.

27

—3 3

3 -3

LOF FUNCTION

[————— PP Mg S e ME R ettt

SYNTAX !

LOF <{{buffer}>’
PURPOSE :

The LOF function returns the last record number of a
direct-access file. The specified buffer must be associated with a
direct~access #ile name previously executed OPEN statement., This
function is especially useful when reading a file of unknown length.

The LOF function reguires only one parameter: the <{buffer’
parameter, This specifies the buffer number (1-15) af the buffer
asspciated with the file for which the last record number is to be
returned. MNote that the file name is aseociated with a buffer only in

the OPEN statement, st the OPEN statement must have been previously
executed.

EXAMPLE :
19 OPENM “D", #1, "EXAMPLE/TXT"
28 FOR R = 1 TG LOF({1)
39 GET #i, R
44 INPUT #1, El%
52 PRINT El%
a8 MEXT R
78 CLOSE #1&
in this example, the entire file will be read and printed. The

FOR loop in line 28 will increment R, from 1 to the last record of the
file.

28

- I |

3 O

0

e ¥

LSET STATEMENT

—— = W W W W e T R ey e v e e my e ek ek e e de e e i i W e r v T de W vkl e wm T M o e we R W Y W W e -

SYMTAX &
LSET <field> = <{data>

PURPGSE @

The LSET statement assigns data to the field name specified, and
left~justifies the data. The field name must have been previously
defined in a FIELD statement. The data will be moved from the variable
or direct assignment made in the LSET statement {(datad tc the memory
area reserved for the variable specified by the {field> parameter.

The LSET statement will left-justify the data as it |is
transferred to the field variable. I+ the data transferred is too long
far the field variable as defined in the FIELD statement, the data
will be truncated.

The LSET statement may be used only with string data. I4 numeric
data is to be LSET, it must be converted to string data first. (use
MKN%)

EXAMPLE @
19 FIELD #:f, & AS Als, 10 AS AZS

20 LSET Als "STRIMNG 1"

38 LSET A2% B%

In this example, the field variable Al% is assigned a length of &
characters, and A2% is assigned a length of 18 characters {both are
defined by the FIELD statement in line 18). In line 29, the data
*STRIMNG 1" is transferred and left-justified into wvariable Als.
However, since the variable Al$ was assigned a length of 6 characters,
and the data is 8 characters long, the data will be truncated. The
result is that the variable Al%s will contain the data “STRING".

In line 38, the data contained in the variable "B%" will be
transferred to, and left-justified in, the variable A2%. As in line
28, 1if the data contained in the variable "B$" is longer than 18
characters (the assigned length of AZ2%), then A2% will contain only
the first 18 characters of the data from B%.

29

(i

—a 3

0 0 O 3 4O 3 323 D3 3O IO O3 3 C3T3 OTAa™

MERGE COMMAND

v e v v e E W R WY M M R A EE R M MR N WS M M N S RN RS R MR RN My de A Al i ok e P R N N M R M R W e g ek T w e A

SYNTAX

MERGE {"+filenamel/ext]l[:d1">[,R]
PURPOSE :

The MERGE command is used to transfer a2 basic program $ile +rom
disk to memory, merging it with the program already in memory. Only a
program which was saved with the ASCII ("A") option may be merged
(refer to the SAVE command).

When two programs are merged, the result is that the program in
memory will contain all of the lines from both programs. The only
exception 1is that when there are line number conflicts {(the same line
number exists in both programs), the line Ffrom the disk +file will
replace the line already in memory.

The parameter "filename” is reguired. The file name extension
"fext" is optional, If the file name extension is not specified, the
extension "/BAB" will be used.

The drive parameter [:d] is also optional. If the drive parameter
is not specified, the current default drive will be used.

The "R" parameter is optional. I+ included on the command 1line,
the "“R"* parameter will cause the program to be run immediately after
the merge is complete, .

EXAMPLE :

MERGE "MYPROG*

MERGE "MYPROG/BAS!1",R

In the +irst example, the program +file "MYPRDG/BAS" will be
merged with the program currently in memory. The program file must be
on the disk in the turrent default drive. In the second example, the
program file named "MYPROG/BAS®™ on drive t will be merged with the

program ¢urrently in memory. The resulting program will be run
immediately after the merge is complete,

28

-t

MKN® FUNCTION

——— . ——— W W R e W e T e U e e e e e g e e s S M W A ek e A AR AN Se S AL S S A SR A AR e e e e

SYNTAX @

MKNM$ {{data)>
PURFPOSE :

The MKN$ function will convert a numeric variable, or a numeric
constant, to a 3-byte coded string. This function is ocpposite to the
CUN function. The CVUN function may be used to decode the string back
to a number.

The MKN% function is especially useful in direct access Ffile

cperations, since all direct access file output must be in the form of
string variables,

EXAMPLE :
As = MEN% (123)

B%

1}

MKN% (C)

In the #first example, the constant 123 will be converted to a
S-byte string code and stored in the variable ®"A%". In the secend
example, the number stored in the variable "C" will be converted to a
S-byte string cpde and stored in the variable "B&",

31

A O 3373 3 O3 OO03373 O O 7 3377 M M4mO &4/

3 /T

CPEN STATEMENT

e MR SR S g S AN M M Ay e e A Ay i e e Sy v e W W TR M W R M T Y W M S M e M M M R EE A e i et ke e W W M M o S Sy e ww o mm

SYNTAX @
OPEN <{"mode">,{#buffer>, {"filenamel/extliid)")[,record lengthl
PURPOSE :

All disk +ile 1/0 is handled through buffers (reserved area in
memory). The OPEM statement associates a gpecific disk +$ile with a
specific I/0 buffer. The OFEM statement must be executed prior to any
file I/0 (GET, FUT, IMPUTH, PRIMTH, etc).

The "mode" parameter specifies the mode of operation for the file
butfer:

I - Input from sequential access file
"Q" - Output to sequential access file
*D" - Input and/or output to/from direct access file

The <(#buffer> parameter specifies the buffer number to be
associated with the +file named on the statement. The <(#buffer)
parameter may be any number in the range 1 tp 15, but must not be the
number of a buffer already open. Also it buffer numbers other than #1
or #2 are to be used, the FILES statement must be executed prior to
the OPEN statement.

The "filename® specifies the file name to be associated with
{#buffer> in all subsequent file I/0 operations until the file is
closed with the CLOSE statement. If "/ext" is omitted, the extension
"/DAT" will be wused. If the drive parameter [!d) is omitted, the
current default drive will be used. .

The [record lengthl parameter is optional, and applies only to
direct access +files (mode "D")., If the [record lengthl is not
speciftied, the record length will default tp 258 bytes. This parameter
may not be used with segquential access files,

EXAMPLE :

OPEM "*I", #1, "TEST"

OFEN ®“D", H", "DATA/TST:1", 49

In the first example, the file "TEST/DAT" on the disk in the
default current drive is opened for input through buffer #1. In the
secohd example, the file "DATA/TST" on the disk in drive i is opened

faor direct access I1/0 through buffer #2. The record length for this
file is specified as 49 bytes,

32

ek

PRINT STATEMENT

—— T A T e e W T M e L L e ma M S A M U N RN NN BN M N R EE EN EE B WR M B M T R e Ak e e ek e e e e W e e e ey o e e e e e

SYNTAX @

PRIMNT <#buffer>,{datalri,datazl,...
PURFPOSE :

The PRINMNT statement moves the data named on the statement line to
the disk output buffer named on the statement 1line. The data are
formatted in the same way as when a normal PRINT statement is
executed. The only difference is that the data are sent to the disk
file buffer rather than tpo the screen or the printer. Refer to the
description of the PRINT statement in the Radio Shack boeok *Going
Adhead with Extended COLOR BASIC" +or details.

Note that the data items named on the statement line may be
separated by either commas (",") or semicolons (";"})., As with the
normal PRINT statement, the comma will perform a tab function by
inserting spaces between data items. The semicolon will supress the
spaces (and the EMTER character) hetween data.

EXAMPLE @
FRINT #1, "THIS IS A TEST", S
PRIMY 83, Al$E; AZ2E; MNj; L

In the first example, the string *THIS 1S A TEST" and the
contents of the wvariable "S8" will be ogutput to the disk file
assaociated with buffer #1. Because of the comma, & number of s&paces
will be output between the string and the contents of the variable
"s$". I+ a semicolon had been used instead of a comma, the spaces
betvieen the string and the data from the variable "S" would have been
supressed.

In the second example, the contents of the variables *Als",
"A2%", *N®*, and "“L" will all be output to the disk file associated
with buffer #5. Since the variables are delimited by semicolons, no
spaces will be output betvieen the variables.,

23

A

'
-t

PRINT UBING STATEMENT

- R N A A A R M WE M AW R Em M R M R R M EE M AN AL S AR i e B e b e A Ay b e = e W mr e W e =

SYNTAX :
PRINT <{#buffer’>, UBIMG {"format"rjdl{datal>l,data2li,...
PURFPOSE :

The PRINT USING statement moves the data named on the statement
line to the disk output buffer named on the statement line. The data
are formatted in the same way as when a normal PRINT USING s=tatement
iz executed. The only difference is that the data is sent to the disk
file instead of the screen or printer. Refer to the description in
Radio Shack’s book "Going Ahead with Extended COLOR BASIC" +for more
details.

The <(format> parameter specifies the data format to be used when
the data are outpui, in the same way as data are formatted when sent
to the screen or printer. The symbols used for formatting are
summarized below,)

Specifties a numeric field.

. Places a decimal point position.

, Places a tomma betueen each 3 digits in a numeric field.
¥ Fills leading spaces of a field with asterisks.

] Flaces a dollar sign at the beginning of a field,

%% Places "floating”® daollar sign adjacent to the first digit in
a numeric +ield.

+ I+ placed in the +irst position of a numeric +field, it
indicates sign to be printed in front of the number. If
placed in the last position of a numeric field, it
indicates the sign is to be printed after the number.

~ Indicates number to be printed in exponential format.
- Places minus sign after negative numbers.
% Delimits literal (string) fields.

H Indicates use of only the first character of a string,
EXAMPLE :

PRINT #1, USING “HHH.HH"; 197.464

This example would output the data "197.464" ag "197.66". The
third digit after the decimal point will Dbe truncated since the
specified format indicates only two decimal positions.
EXAMPLE :

PRINT #3, USING "¥¥HEBHHH#.HH-"; -3.78

This example would result in the cutput of "¥#$3.78-" to the file
associated with buffer #3.

EXAMPLE @
PRINT #1, USING "% %"§; "STRIMNG"
This example would output the data “STR" to the disk file

associated with buffer #i.

34

e [D I — E—— E—— Ee. R J———

L

PUT STATEMENT

R R S AN SR MR ME R N SR S Ak ey S Ay ey i e e e e W e TR TE WE N M AR R M EY M MR N ML M RA SR e AR ek b dm e v A R N MR EE ER MR M Em A e b e

SYNTAX :

PUT <[#lbufferdl,record number]l
PURPOSE :

The PUT statement is used to write a direct access file buffer to
the associated disk file. When performing direct access +file output,
the WRITE statement transfers data to the disk buffer, and the PUT
statement transfers the buffer data to the disk file record.

The <buftfer’> parameter is required on the PUT statement line, but
the [record number] parameter is optional (note that the symbol "#" is
optional in the <buffer) parameter). The I[record numberl parameter
specifies the record number of the file to which the buffer is to be
written. I+ this parameter is omitted, the record number which was
last read into the buffer will be used.

EXAMPLE @
i¢ OPEN *D", #3, "DATA/DAT", 1¢
20 FOR R = 1 TO 20
39 WRITE #i, " "
44 PUT H3, R
5@ NEXT R
6% CLOSE 43

This program segment will fill 18 records of the file "DATA/DAT"

with ASCII spaces. Note that the file consists of 28 records of 18
bytes each.

a5

e |
e

9 O

RENAME | COMMAND

A S Ak B M e M ey ey e R N R A AR M G4 AR A ey e e W M W W W AN A e e e B e

BYNTAX :
RENAME <("filenamel/exti dlI"> TO {("filenameZ/extlidl">
PURPOSE :

The RENAME command is used to give an existing file a new name.
The file contents will not be moved or changed in any way. Only the
name of the file in the directory will be changed.

The “"filenameil”™ parameter specifies the current file name. The
"filename2" parameter specifies the new +file name. So, the RENAME
command will change the current file name "filenamel" to the new file
name “"filenamez2”.

The file name extension "/ext® is required For correct use of
this command.

The drive parameter [:d} is optional. 1+% it is included, The file
will be renamed on the disk in the drive specified, Otherwise, the
file named is assumed to be on the disk in the current default drive.

EXAMPLE :
RENAME "MYPROG/BAS™ TOQ "YOURFROG/EBAS"

In this example, the file named "MYPROG/BAS" on the disk in the
current default drive is renamed to "YOURPROG/BAS".

36

P R

3

RSET STATEMENT

W T W T FW MR TE WE S EW N TR R AN EE AS WE N AN M MR A EE SR el Mk A ke B bl e e e ey e e e e e MW MW M M P B M M AE M AR AR AN R AR R A e v v e ww mm mm mm Em

SYMTAX !
RSET (field> = {data’
PURPOSE @

The RBET statement assigns to the field name <(+$ieldy and
right-justifies the data. The field name <Ffield> must have been
previously defined in a FIELD statement. The data will be moved +rom
the wvariable or direct assignment {data’ on the statement line to the
memory area reserved for the varlable {field>.

The RSET statement will right-justify the data as it is
transferred to the +field wvariable. I+ the data transferred are too
long for the +ield variable as defined in the FIELD statement, the
data will be truncated.

The RSET statement may be used only with string data. I+ numeric
data is to be RSET, it must first be converted to string data (refer
to the MKM% function).

EXAMPLE :
19 FIELD #1, 1&g AS Als, § AS AZ$

29 RSET Alds = "STRING 1"
38 BE = "STRIMG 2Z*
49 RSET AZ$% = B#%

In this exanple, the variable "Al$" has been +fielded as a 1@
character variable, and "A2%" has been fielded as a & character
variable (line 1&). In line 2¢, variable "Al%" is RSET to "STRING 1*,
The result would be that Al$s = " STRING 1", Two spaces would be
padded to the left of the data "STRING 1" sp that the string is
right-justified within the 18 character field,

In line 48, AZ% is RSBET to the variable B% which contains the
string “"STRING 2". Since "STRING 2" consists of 8 characters, and the
variable AZ% has been fielded as a 5 character variable (line 18}, the
contents of the {field variable AZ2% after execution of line 48 would be
"ETRIN",

27

——
meinililiel

=

RUN COMMAND

TR i A G o mm mmmmwm Em AL Sm d drh W W e W e e e A e v e G N R R M S R N R e ey rm W R WA MR A4 WA At e A e ey

SYNTAX :
RUN <"filenamel/ext3(:dl">[,R]
PURPOSE :

The RUM command is used to lpad and run a BASIC program file from
disk. The BASIC program file "filename" will be loaded from disk into
memory and executed. If the extension parameter "/ext" is omitted, the
extension °/BAS" is assumed. If the drive parameter {:id] is omitted,
the program file is assumed to be on the disk in the current default
drive.

I+# the *,R" option is used, all currently open disk files will
remain open.

EXAMFPLE

RUM "MYPROG"®

RUN “MYPROG/TST:i*

In the first example, The program saved in the file named
*"MYPROG/BAS" an the disk in the current default drive will be loaded

and executed. In the second example, the program saved in the +file
named *MYPROG/TST" on the disk in drive 1 will be lpaded and executed.

38

D B

—

SAVE COMMAND

M her W S e ety e vk e e e ey A e B e T AR R T M W M W FE N N M E M F M M N MR ik M A vk we v A T R TR W W M R e ki A A e S el

SYNTAX @
SAVE ("filenamel/extlidi®*>[,A]
PURFOSE :

The SAVE command is used to save a basic program to disk. The
BASIC proagram currently in memory will be saved oh a disk +file with
the name "filename™ as the specified on the command line. I+ the
extension "/ext" is not included on the command line, the extension
“/BAS" wil}l be used, 14 the drive parameter [:d] is omitted $rom the
command line, the program will be saved on the disk in the current
default drive.

I the ",A” parameter 1is included on the command line, the
program will be saved In ASCIT form (not TOKEMISED) on the disk, If
the ",A" parameter is omitted from the command line, the program will
be saved in a coded (TOKEMNISED) form. Although a program saved in
ASCII will reguire more disk space, it may be edited (using a word
processor) like any other ASCII text file. Alsa, a program which is to
be merged with another +ile must be saved in ASCII form {refer to the
description of the MERGE command).

EXAMPLE :

SAVE "MYPROG"

SAVE "MYPROG/TST:!L",A

Iin the +irst example, The program currently in memory will be
saved in a file named "MYPROG/BAS" on the disk in the current default
drive. 1In the second example, the program currently in memory will be

saved in ASCII format in a file named "MYPROG/TST" on the disk in
drive 1.

ae

.

SAVENM COMMAND

- T T rm o v B e e e b i by s e e el by A e Ml ke ey ey ek e W e e ey ey e e i e e e e ek v e T W o tem N M E mm Em Em Em Em Em Em Em Am

SYNTAX ¢
SAVEM {"filenamel/extILidl") , {first),<lasty,{execution>
PURPOSE :

The SAVEM command is used to save a machine~code program or data
to disk. The program or data currently in memory will be saved in a
+ile named "filename". If the +ile name extension "/ext" is not
specified, the extension "/BIMN® will be used. If the drive parameter
f:d3 is not specified, The program will be saved on the disk in the
current defaunlt drive.

The {ftirst> parameter spercifies the first (lowest) address of the
program to be saved. The (last> parameter specifies the last (highest)
address of the program. The {execution)> parameter specities the entry
point (execution address) of the program. MNote that the
<firsty>,<last’>, and {execution’> address parameters are asgssumed to be
in decimal unless they are preceded by "&H® which indicates that the.
numbers are HEXADECIMAL.

EXAMPLE @
SAVEM "MYPROG", 1824,2848, 1624
SAVEM *MYPROG/TST:i", WHig@d, &H140@, &H142d

In the +Ffirst example, the program located in memory between
addresses 1924 decimal and 2948 decimal will be saved in a file named
"MYPROG/BIN® on the disk in the current defauli drive. The execution
address (entry point) of this program is defined to be 1824 decimal.
In the second example, the program in memory between 1888 HEX and 1488
HEX will be saved in a file named "MYPROG/TST" on the disk in drive 1,
The execution address of this program is specified as 1629 HEX.

99

3 7

UNLOAD COMMAND

MR i v o e N R S AL R AL A e o T W R R NW ME A ML MR EE e e e e v e e AT R L MR MA R sk b s e e e A T M RN R e e M v e W ey e e e

SYNTAX @
UMLOAD [drivel

PURPOSE @

The UMLOAD command is used to close all files which are currently
cpen on the specified drive. If you change disks while one or more
files are open, it is very likely that you will destroy the directory
on the disk. For this reasor, it is good practice tg use the UNLOAD
tommand before changing disks. 0f course, i¥ you are not doing any
file I/0, vou don't need to use the UMLOAD command.

The Idrivel parameter on the comwmand line is optional. 14 the
drive parameter is included, the files which are open on the drive
specified will be closed. I+ the drive parameter is omitted from the
command line, the files which are open on the current default drive
will be closed.

EXAMPLE 3
UNLOAD
UNLOAD
In the first example, all of the +iles open ovn the current

default drive will be closed. In the second example, all of the files
open on drive 1 will be closed.

41

-

3 T3 1

b

VERIFY ' COMMAND

. e i G A M e e e M L L e e me e Mk e e e AL W R N MR N T M e e mm e e e A b T e e T W e e v s b v

SYMTAX

VERIFY OWM

ar

VERIFY OFF
PURPOSE

The VERIFY command is used to control the disk 1/0
read-atter-write verify function. Mormally, the computer does not
verify disk write operations. When the command "VERIFY ON" is invoked,
the computer will perform read-after-write verification of all data
written to disk. This verification function will remain in effect
until! either the command "VERIFY OFF" is executed, or the computer is
RESET. _

When the computer performs a read-after-write verification, it
will read a sector back just after it is written to the disk. It wiill
then compare what it read from the sector with what it wrote to the
sector. I+ the two are not the same, the computer will attempt to
write the sector again, up to a total of five times., I+ it still
canrot record the data properly it will issue a VF ERROR message. In
this way, you may be sure that the data was written to disk properly,
before it is too late.

EXAMPLE :
VERIFY ON

In this example, the read-after-write verification function |is
enabled. It is gond practice to use this feature at z2ll times.

42

WRITE STATEMENT

SYNTAX =
WRITE <{#bufter>,<{datai>f,data?l,...
PURPOSE :
The write statement is used to transfer data 4rom constants or

variables to a specified disk output buffer. The data items will be
transferred to the buffer in the order that they appear on the

statement line. I+ the specified buffer is associated with a
direct-access file, the data items will be placed in the buffer in
fields immediately adjacent to one another. Data items in a

sequential-access file will be separated by commas.

The {(#buffer) parameter specifies the buffer {(1-15) to which the
data are to be transferred. At least one data item must be present on
the statement line. The data item may be either a tconstant or a
variable. If more than one data item is specified, the items must be
separated by commas. Unlike the PRIMT statement, the commas on the
Wwrite statement line perform no function other than delimiting the
items on the list,

EXAMPLE :
WRITE #1, A, B, B%, "STRING"

In this example, the contents of the variables "A", "B*", and
"B®*, as well as the string constant "STRING", will be transferred to
disk output buffer #1. The contents of the variable "A" will be placed
in the buffer first, followed by the contents of "B", the contents o+
"BE", and finally by the constant "STRING®.

42

A summary.
Here are the instructions used inm DISK BASIC and a briet
explanation of sach one.

BACKUF <{source driver TO {destination drive}
BACKUP &

Copies the entire contents pf disk in <source drive> to disk in
{destiration drive>. The first command listed is used on multiple
drive systems or on double sided drives {not supplied by TANDY), to
transfer files from one drive to another or one side to another, e.g.
BACKUF @ to 2. The second command is for single disk drive users. 1In
thig mode the computer will prompt you to change disks when necessary.

DO NOT MIX UP THE DIBSKS !}

CLOSE [{# bufterd[,IH#]1 bufferl,...

Closes disk files associated with the buffers specified. 14 no buffer
specified, all buffers are closed.

COPY <{("filename l/ext [:dl"> TO {"filename Z2/ext L[:d1"*>
COPY <{"filename/ext">

Contents of source file "filename 1" are copied to destination +ile
“filename 22", 3Second form s for single disk drive users to copy a
t+ile to another disk., COPY can be used to treate an identical +file on
the same disk as long as the filenames are different.

CUN {{data)>

Decodes a 9 w«haracter string variable tn numeric form. E.g.
A=CUN(A%). See also MKNS

DIR [drivel

Displays a directory of the disk in the specified drive. 1§ no drive
is specified then the default drive is used. Default drive is 9 an
power up. E.g. DIR 2

DRIVE <drive>

Changes the defaultlt drive number to <{drive), Default drive is used in
an instruction where nho drive is specified. E.q DRIVE 2.

DSKINI <{drive>

This command is used to forwat a new disk or clean off a used disk.
WARNING ! USE WITH CARE.

DEKI% <drive’,<{track>,<sector?,<{(string variable 1>,{(string variable 2
Inputs {sector? of {track> oh disk <drive> directly into
{string variable 1> and {string variable 2>, String wvariable 1 will

receive the Ffirst 128 bytes of the sector and string variable 2 will
receive the second 128 bvytes.

44

3 T3 /13

] T /4 3 42

B |

3 T T

DSKO% <driver>,{track¥,{sector>,{"data 1">,{"data 2">

Writes {"data 1"> and {"data 2"> directly into {(sector? of <{track) on
disk in {driver. {("data 1"> or {("data 2"> can be string variables. The
first data or string variable is written to the first half of the
sector and the second data or variable is written to the second half.

EOF <(buffer)>

Returns the value of -1 1if there is no more data to be read from the
digk file. Returns & i¥f there is more data. E.g. IF EOF({1) = -1 THEN
=Y]

FIELD <#buftter?,{(field sized AG <{fieldname’,...

Associates variable names with, and defines {ields in disk file
buffer. Farameter {#buffer> specifies buffer number {(1-1%5),
(field size> specifies the number of characters to be reserved for
variable ¢fieldnamed>., Fields are reserved in the order they are
specified. E.g. FIELD#1,5 AS A%,1d AS B%,3 AS C4%

FILES <number>,tsizel

Reserves memory for <{number?> of file buffers, and I[sizel in
characters of each. Used for DIRECT ACCESS record buffers only. I+
Isize)l is not speciftied, 256 characters will be reserved. System
defaults to FILES 2,254.

FREE <{drive)>

Returns the number of unaillocated granules on the disk in drive
{drive?. 1 granule = 9 sectors of 2384 bytes each. E.g. PRINT FREE (&)

GET <#buffer),irecordl

Reads {recordl +from DIRECT ACCESS file to <#ibuffers. File mnust be
OPEN. I+ [recordl] i3 not specified, next seguential numbered record
will be read,

INPUT (Hbufferr,svariable i>[,variable 23},...

Transfers data from {Hbuffer> to variables {variable 12>,
[variable 21,... in the order that the wvariables sppear on the
statement line.

KILL <"filename/ext{:dl1"}

Deletes file "4ilename/ext" <from the disk. If drive [!d] is not
specified, current default drive will be used.

LINE INPUT <{Hbuffer>,<{string variable:’
Transters a line of string data from {(#buffer> to <string variable).

Data are transferred until "ENTER" character {@D hex or 13 dec) is
encountered.

43

e IO RERmon- I I, [R E— R — R—— i — R— I—- E— ——

/7 T3 T ™ /M

i |

LOAD <"tilenamel/extl[:dl)*>[,R]

Loads BASIC FPROGRAM from disk +file "filenawme” into mwmemory. I+
filename extension ({(/ext) is not specified, /BAS is used. If [:dl is
not specified then default drive is used. I+ I[,R) is specifiéd,
program will be RUMN immediately after It is loaded.

LOADM <"+ilenanel/extl[idl"}[,offsetl

toads a HMACHIME CODE program “filename" into memory. I+ filename
extension [/ext) is npt specified, /BIN is used. If drive [:d] is not
specitied, the default drive will be used. The program is loaded into
memory at the load address it was saved from plus the pifset (if
supplied).

LOC {ibufferl) >

Returns the record number of the record currently in {({(buftferl>. E.q.
A=LOC({1).

LOF <{(buffer) >

Returns the last record number of the +ile asspciated mwith
{{buffer)?>. Used on DIRECT ACCESS +files anly. .

LSET <{field> = <data>

Transfers data from variable or constant {data> to {field} variable.
Data will be left justified in <{field> atter transfer. €.9. LSET A%=B%

MERQE <"filename/extl[:d]">[,R]

Merges BASIC program file "filenamne"” with BASIC program in memory.
Program +file to be merged must have been saved in ASCII 4armat. (see
SAVE) I+ drive [:d] is not specified, default drive will be used., I+
[,R} Ils specified, program will be RUN immediately after merging.

MKN® < {(data)’>

Converts a numeric constant or variable {((data)?> to a S-byte Btring
(see alsog CVN).

CPEN < "mode" >, {(#buffer>,{"filenamel/extll:dl">!,record lengthl

Opens a disk file "filename” for I/0 through <(#bufferd>., Parametesr
{"mode"> is "I" for seqguential access input, "0O" for sequential access
output, "D*" for direct access input or output. parameter <#buffer’
must be 1-13, and must not be already OPEM. I+ [/fext]l is not specitied
s "/DAT" will be used. If {:d] is not specified, current default drive
will be used, 1f [record lengthl "is not specified, 256-byte records
will be assumed (DIRECT ACCESS only).

PRINT <{#buffer>,<{data 1>[,data 23,...
Transfers data from constants or variables {data) to {#buffer>. Data
are transferred in the order that the <(data)- are named on the

statement line. Follows the same rules as for FPRINT statement. E.g.
PRINT #2,A%,B$;CsD

aé

PRINT <#buffer>, USING <{format>jddata 1>Cdata Z3,...

Transfers data from constants or variables <{data> to <(#buffer). Data
are transferred in the order that it appears on the statement line.

Follows the same rules as the PRINT USING statement. E.g. PRINT #i,
USING "HHH.HH";A

PUT <{#buffer>l,record number]

Writes data in <{#buffer)> to [record number] of disk +file associated
with <(Hbuffer>. If (record numberl is not specified, record number of
record currently in <{#buffer> will be used. E.g. PUT #3, F

RENAME <("filename 1/ext[:d]1"> TO <"filename 2/extl:di1">

Renames file named "filename 1" to "filename 2". If [:d] is not

specified, current default drive will be wused. E.g. RENAME
"MYPROG/BAS:2" TO "YOURPROG/BAS:2"

RSET <{field> = (data)

Transfers data from constant or variable <data) to +field variable

{field>. Data are right justified in <$¥ield> after transfer. E.g. RSET
A%=B%

RUN <("filenamel/extll[:dl">

Loads and runs BASIC program flile "filename". 1+ "/ext" is not
specified, the current default drive is used. E.g. RUM "GAME"

SAVE <("filenamel/extll[:d1">[,A)

Saves the BASIC program in memory to disk file "filename". I "/ext"
is not specified, "/BAS" will be used. If [:d] is not specified, the
current default drive will be used. If ",A" is specified, the progranm
will be saved 1in ASCII format.(I.E. not TOKENIZED) E.q. SAVE
*"MYPROG:2",A

SAVEM <'filename[/ext][:d]“),<+ir5t},<last>.<executiun}'

Saves a machine code program in memory at address <first) through to
{last> to disk file "filename". Entry point address <execution) will
be saved with the +file. If "/ext" is not specified, "/BIN" will be
used. If [:d] is not specified, current default drive will be used.
Parameters <first>,<last>, and <execution?> must be decimal unless
preceded viith "ReH" to indicate HEXADECIMAL. E.q. SAVEM
"MYPROG",&H1900,8H140@,¢H120g

UNLOAD [drivel

Closes all +files currently open on [drivel. If I[drivel is not
specified, current default drive is assumed. E.g. UNLOAD @

47

VERIFY ON
VERIFY OFF

Turns ON or OFF the read-after-write verity option. Option remains in
effect until changed or computer is RESET. After RESET verify option
is OFF,

WRITE <{Hbuffer>,{data 1>[,data 23,...
Transters data from constants or variables <data) to <#bu+tferd. Data

are transferred in the order that they are named on the statement
line. E.g. WRITE #i,A,B,"STRING"

We hope that this booklet will be as educational to you as it has
been to us as we put it together. Good Colour Computing.....
Bob Devries and Graham Butcher.

48

e S R - s B I — E— E— E— R R Es B B Eo- B B R - B

Disk Extended Color Basig Instruction Set.
Error Messages.

Several new error messages are included in the Disk Basic ROM.
They are listed here in alphabetical order with their meanings -.and
corrective actions.

AE Already Exists

FROBLEM * File name specified as a new +ile name in a COPY or
REMAME command already exists in the directory.

CORRECTIVE ACTIOM Use a different file name or delete the
existing file with the same name,.

A0 Already Open

PROBLEM : An attempt was made to open a file which was already
open.

CORRECTIVE ACTION : Close the file. A file must be closed before
it can be opened.

BR Bad Record NMumber

PROBLEM : The record specified does not exist in a direct-access
file,

CORRECTIVE ACTIOM ¢ Use the LOF function to determine the number
of records in the file. Do not use a record number greater than that
returned by the LOF function.

DF Disk Full

PROBLEM : There is not enough unallocated disk space remaining
on the disk to complete the command.

CORRECTIVE ACTIOM : Either delete one or more files on the disk
or use another disk with more unallocated space.

DN Drive Number

FROBLEM A drive number has been specified which is not
allowed.

CORRECTIVE ACTION : Use another drive number. Only drive numbers
¢, 1, 2, or 3 are allowed.

ER End of Record

PROBLEM : In a direct-aceess file, an attempt has been made to
transfer data beyond the end of the record. The length of the record
specified with the open statament must not be exceeded.

CORRECTIVE ACTIOM : Check the record length specification in the
open statement. If the record length specification is correct, do not
attempt to transfer more data than may be contained in a record of the
length specified.

49

/3 T3 T 13 "3 T3 4, 4.

Ao R R S B B [. B . B —- —.

FD File Data Ervror

PROBLEM ! An attempt has been made to transfer data between a
file bufter and a variable of a different type. For example, if the
data in the buffer is string data, and the variable is numeric, this
error will occur.

CORRECTIVE ACTION Use string variables to transfer dats
fields, and numeric variables for numeric fields,

FM File Mode Error

PRGBLEM An attempt has been made to access a file in a mode
other than that for which it was opened. For example, an attempt to
write data to a sequential access file which is open for input (*1"
mode), wili cause an FM error, as will using the LOAD command instead
of LOADM for a BIMARY file.

CORRECTIVE ACTION : Either close the file and re-open it for the
correct mode, or change the statement in error ta agree with the mode
$or which the +ile was opened.

FN File Name Error

PROBLEM = & file name has been specitied which includes
characters that are not allowed, or more thar the maximum allowed
nnumber of characters.

CORRECTIVE ACTIOM : Correct the file name. A +file name may
contain any character except a slash ("/") or a period (*,") or a
colon (*:"), and must be no more than 8 characters in length. “

FO Field Overflow Error

PROBLEM An attempt has been made to transfer more data to a
field variable than the variable is defined to contain. For example,
i¥f a variable has been fielded as a 5 character field, and an attempt
is made to transfer more than 5 characters of data to it, an FG error
will pccur.

CORRECTIVE ACTION Either re-define the field variable, or
re-detine the data being transferred to it. '

F& File Structure Error

FROBLEM @ The disk granule table in the directory has been
altered in such a way that the granules do not correspond correctly
with the files in the directory.

CORRECTIVE ACTION : The disk must be re-formatted. Use the copy
command to save as many files as possible, then re-format the disk.

IE 1Input past End of file

PROBLEM ! An attempt has been made to read more data +rom a file
than is contained in the file.

CORRECTIVE ACTION tUse the EOF andsor LCGF {functions to
determine the +file length. Do not attempt to read more data from the
file than it contains.

5S¢

I0 Input/Output Error

PROBLEM : An error has occurred during a disk 1/0. The error may
be due to a number of problems such as CRC errors, noc disk in the
drive, etc. An unformatted disk or a disk not from the Color Computer
will give this error. “

CORRECTIVE ACTION : Check that the disk system is being used
correctly.

NE MName Error

PROBLEM : The +ile name specified in a command was not found in
the disk directory. The file does not exist.

CORRECTIVE ACTION ¢ Either the +file name was incorrectly
speciflied, or the file may exist on another digk.

NQ Mot Open Error

PROBLEM : An attempt has been wmade to transfer data to or from a
disk file which has not been opened with an open statement.

CORRECTIVE ACTION ! Do not attempt to read or write toc or from a.
disk file unless the file has been opened with an open statement.

OB COut of Buffer space Error

PROBLEM : Insufficient memory epace has been allocated to the
direct-access record buffer.

CORRECTIVE ACTIOM : Use the files statement to allocate more
buffer space.

8E Set Error

PROBLEM An attempt has been made to rset or lset data to a
hon-fielded variable. These functions may be used only with Ffielded
variables.

CORRECTIVE ACTION Use the rset and lset functions only with
the variables which have heen defined with the field statement.

VF Verification Error

PROBLEM : This error otcurs during a disk write operation when
the verify option is on, and the data read +from the disk dpoes not
match that which was written.

CORRECTIVE ACTION : Re-issue the tommand. Many YF errors will
not persist. If the problem persists, you may need to re-format the
disk or use a new disk.

WF Write Protect Error

PROBLEM : An attempt has been made to write to a disk which is
write protected.

CORRECTIVE ACTION : Either remove the write protect tab, or use
another disk.
ot

AFRPFEMNMDI X

This section lists the special features of Rainbow Bits 1.4 Disk
Expanded Basic, which is supplied in locally built disk controllers,

BAUD RATE

The printer baud rate is now set to a default of 1208 baud. See
Note 1.

STEPPING RATE
The rate at which the drives now step from track to track is now
6 mnmilliseconds instead of the Tandy rate of 39 ms. This makes

cperation of the new slimline drives much gquieter and faster. Do Not
use these controllers with the gld style Tandy drives.

DRIVE SELECTION
Four psuedo drives can be selected: -

Drive @ (default}

- side 1 of physical drive 8.
Drive 1 - side 1 of physical drive 1.
Drive 2 - side 2 of physical drive @.
Drive 3 - side 2 of physical drive .

HEAD RESTORE
The power up sequence now sets up the Current Track Table so that

the drive head is restored to track € on the first read or write of
the disk. This reduces head banging problems.

DIRECTORY

The DIR command now results in a pause atter one page of
filenames has heen printed on the screen. The listing may be continued
by pressing any key except (BREAK} which will terminate the listing.

LIST

When listing a basic program the +4low may now be halted by
pressing any key instead of the usual <{shift @> combination. The
listing may be restarted by pressing any key except (BREAKY which
terminates the listing.

VERIFY

The verity function now defaults to OM when the computer is
turned on. If you wish to disable it, type "VERIFY OFF".

NEW COMMANDS
Eight new commands have been added for programming convenience.
AUTO <n,m>
Auto Jine numbering is invoked on input of <n}) ipitial line
number and {(m> increment. If just AUTO jis used alone it will default

to 1@,14.

52

= 3 T3 TN =xx

-

3 T T/ T, T&m T3 ™

3 /T /3 3 3

- 3

Dunp

Text
screen to the

FLEX

screen dump prints the entire contents of the text
printer.

If FLEX boot disk is in drive & it will start up the FLEX

operating svyst

21-34

em.

I+ 059 boot disk is in drive @ it will start up the 089
operating system. It is no longer necessary to have a separate 089
boot disk. MNote +the 0S% cowmand can also be used in the same way as

the DOS comman

MON

Mach

d in the RADIQ SHACK 1.1 DISK EXTEMDED COLOR BASIC,

ine Language Monitor Routine. Starts up with a > prompt.

Commands used are; -

Xome
|

Note atll

PON

fill block of memory

90 to user program

examine block of memory

outputs m.1. program in disassembler form
exits back to BASIC

addresses must be supplied in HEXADECIMAL.

Enables printer putput. Any obutput which goes to the printer is

also printed o

POF

n the printer.

Disables the printer. See PON.

RAM

Transters
RUNM*fitle
Loads and

For thos
(function) key

F1 =
F2
F3
<{shitt)>+F4

4 1 R

Saoftuware
installed.

MNote 1.
when the disk

all Basic ROMS to RAM and jumps into 64K wmode.

name"
auto executes a machine code program from disk.

e with special keyboards e.g. HIL with four extra
51~

Contropl _
Upper/Lower case toggle
Auto repeat Ley

Screen dump (text screend

jump to "88 column crt® card is included if card is

Printer baud rate may be sel to your personal preference
controller is built.
53

_“lll!l_l'!l_ll_-ll[lllll

